Package: FastImputation 2.2.1

FastImputation: Learn from Training Data then Quickly Fill in Missing Data

TrainFastImputation() uses training data to describe a multivariate normal distribution that the data approximates or can be transformed into approximating and stores this information as an object of class 'FastImputationPatterns'. FastImputation() function uses this 'FastImputationPatterns' object to impute (make a good guess at) missing data in a single line or a whole data frame of data. This approximates the process used by 'Amelia' <https://gking.harvard.edu/amelia> but is much faster when filling in values for a single line of data.

Authors:Stephen R. Haptonstahl

FastImputation_2.2.1.tar.gz
FastImputation_2.2.1.zip(r-4.5)FastImputation_2.2.1.zip(r-4.4)FastImputation_2.2.1.zip(r-4.3)
FastImputation_2.2.1.tgz(r-4.4-any)FastImputation_2.2.1.tgz(r-4.3-any)
FastImputation_2.2.1.tar.gz(r-4.5-noble)FastImputation_2.2.1.tar.gz(r-4.4-noble)
FastImputation_2.2.1.tgz(r-4.4-emscripten)FastImputation_2.2.1.tgz(r-4.3-emscripten)
FastImputation.pdf |FastImputation.html
FastImputation/json (API)

# Install 'FastImputation' in R:
install.packages('FastImputation', repos = c('https://shaptonstahl.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 5 scripts 313 downloads 6 exports 2 dependencies

Last updated 1 years agofrom:4279c96faf. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:BoundNormalizedVariableCovarianceWithMissingFastImputationNormalizeBoundedVariableTrainFastImputationUnfactorColumns

Dependencies:latticeMatrix